We: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
Historically, the development of life has been portrayed in distinct stages ('''Figure 1'''). Life began at the ''Root'' and through time, evolution iron out the kinks to be us, the most complex forms of life on the planet. But this leaves an important question, ''where did the root come from?'' | Historically, the development of life has been portrayed in distinct stages ('''Figure 1'''). Life began at the ''Root'' and through time, evolution iron out the kinks to be us, the most complex forms of life on the planet. But this leaves an important question, ''where did the root come from?'' | ||
Life is thought to have started from simple inorganic molecules ('''Figure 2''') <ref>'''Evidence for early life in Earth's oldest hydrothermal vent precipitates.''' Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T.S. (1 March 2017). . ''Nature''. '''543''' (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. <nowiki>PMID 28252057</nowiki>. Archived from the original on 8 September 2017. Retrieved 2 March 2017 via https://www.nature.com/articles/nature21377?source=post_page---------------------------.</ref><ref>'''Crucial steps to life: From chemical reactions to code using agents'''. ''BioSystems''. '''140''': 49–57. Witzany, Guenther (2016). doi:10.1016/j.biosystems.2015.12.007. <nowiki>PMID 26723230</nowiki>. Accessed via: https://www.sciencedirect.com/science/article/abs/pii/S0303264715002063</ref>. These particles interacted to make other larger molecules which eventually gained the ability to replicate themselves independently. Imagine, the simplest self replicating unit | Life is thought to have started from simple inorganic molecules ('''Figure 2''') <ref>'''Evidence for early life in Earth's oldest hydrothermal vent precipitates.''' Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T.S. (1 March 2017). . ''Nature''. '''543''' (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. <nowiki>PMID 28252057</nowiki>. Archived from the original on 8 September 2017. Retrieved 2 March 2017 via https://www.nature.com/articles/nature21377?source=post_page---------------------------.</ref><ref>'''Crucial steps to life: From chemical reactions to code using agents'''. ''BioSystems''. '''140''': 49–57. Witzany, Guenther (2016). doi:10.1016/j.biosystems.2015.12.007. <nowiki>PMID 26723230</nowiki>. Accessed via: https://www.sciencedirect.com/science/article/abs/pii/S0303264715002063</ref>. These particles interacted to make other larger molecules which eventually gained the ability to replicate themselves independently. Imagine, the simplest self replicating unit. For every billion replications an error occurs making a new type of replicant which then over time repeats this process. Add a dash of selection of the best replicants by evolution and a [[Long collective history|billion years]] later you get life... | ||
[[File:Inorganic life.jpg|center|700x700px|alt=Biomolecular pathway|'''Figure 2'''. From the simplest inorganic to the more complex organic.|thumb]]This process is called abiogenesis. If you wait another 3.5 billion years, the process becomes even more complex, and results in multicellular organisms, like us. Whilst the traditional stepped classification (see '''Figure 1''') is useful to scientists, as it makes digestible chunks to interpret, in the real world the process is much more fluid<ref>'''Taxonomic boundary paradox''' as described by: Taxonomy versus evolution: János Podani Department of Plant Taxonomy and Ecology, Biological Institute, Eötvös University, Pázmány P. s. 1/c, 1117 Budapest, Hungary. TA XON 58 (4) • Published November 2009: 1049–1053. Accessed on 3 July 2022 via: https://onlinelibrary.wiley.com/doi/epdf/10.1002/tax.584001 </ref>. Similar to the roots of a tree branching out, although many stems are produced it is still the same ''super'' organism travelling through time, as shown below. | [[File:Inorganic life.jpg|center|700x700px|alt=Biomolecular pathway|'''Figure 2'''. From the simplest inorganic to the more complex organic.|thumb]]This process is called abiogenesis. If you wait another 3.5 billion years, the process becomes even more complex, and results in multicellular organisms, like us. Whilst the traditional stepped classification (see '''Figure 1''') is useful to scientists, as it makes digestible chunks to interpret, in the real world the process is much more fluid<ref>'''Taxonomic boundary paradox''' as described by: Taxonomy versus evolution: János Podani Department of Plant Taxonomy and Ecology, Biological Institute, Eötvös University, Pázmány P. s. 1/c, 1117 Budapest, Hungary. TA XON 58 (4) • Published November 2009: 1049–1053. Accessed on 3 July 2022 via: https://onlinelibrary.wiley.com/doi/epdf/10.1002/tax.584001 </ref>. Similar to the roots of a tree branching out, although many stems are produced it is still the same ''super'' organism travelling through time, as shown below. |
Revision as of 22:40, 21 July 2022
We are all more closely related than you may think.
Historically, the development of life has been portrayed in distinct stages (Figure 1). Life began at the Root and through time, evolution iron out the kinks to be us, the most complex forms of life on the planet. But this leaves an important question, where did the root come from?
Life is thought to have started from simple inorganic molecules (Figure 2) [1][2]. These particles interacted to make other larger molecules which eventually gained the ability to replicate themselves independently. Imagine, the simplest self replicating unit. For every billion replications an error occurs making a new type of replicant which then over time repeats this process. Add a dash of selection of the best replicants by evolution and a billion years later you get life...
This process is called abiogenesis. If you wait another 3.5 billion years, the process becomes even more complex, and results in multicellular organisms, like us. Whilst the traditional stepped classification (see Figure 1) is useful to scientists, as it makes digestible chunks to interpret, in the real world the process is much more fluid[3]. Similar to the roots of a tree branching out, although many stems are produced it is still the same super organism travelling through time, as shown below.
We are all more closely related than you think, as all life, in short, is us travelling through time!
Further reading
- The Selfish Gene - Dawkins, Richard, 1941. Oxford ; New York :Oxford University Press, 1989. ISBN: 978-0198788607
References
- ↑ Evidence for early life in Earth's oldest hydrothermal vent precipitates. Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T.S. (1 March 2017). . Nature. 543 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. Archived from the original on 8 September 2017. Retrieved 2 March 2017 via https://www.nature.com/articles/nature21377?source=post_page---------------------------.
- ↑ Crucial steps to life: From chemical reactions to code using agents. BioSystems. 140: 49–57. Witzany, Guenther (2016). doi:10.1016/j.biosystems.2015.12.007. PMID 26723230. Accessed via: https://www.sciencedirect.com/science/article/abs/pii/S0303264715002063
- ↑ Taxonomic boundary paradox as described by: Taxonomy versus evolution: János Podani Department of Plant Taxonomy and Ecology, Biological Institute, Eötvös University, Pázmány P. s. 1/c, 1117 Budapest, Hungary. TA XON 58 (4) • Published November 2009: 1049–1053. Accessed on 3 July 2022 via: https://onlinelibrary.wiley.com/doi/epdf/10.1002/tax.584001